想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

  • A+
所属分类:头条
摘要

再也不怕客户爸爸的奇葩需求了

广告也精彩
伊瓢 发自 凹非寺 
量子位 报道 | 公众号 QbitAI



“麻烦帮我把照片上这个美女转过来,脸朝前。”

设计师们总是接到这种神奇的需求,但是受限于素材和工具的“想象力”,设计师无法凭空推理出背影女子的正脸是美女还是恐龙,这种需求根本无法达成。

不过,AI似乎把这个问题解决了。不过转过来的不是美女,而是香车。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

我们看到图上汽车的背影,几辆车在道路的右侧向前行驶。清华、MIT和谷歌的研究人员,通过AI“脑补”3D图形,成功的让最后面这辆黑色的车“掉头”了。

先打个左转弯转过来。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

然后掉头180°,开始“逆行”。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

而且除此之外,这项研究成果还可以实现“看图拍电影”功能,一张静态图就可以演化出一系列不同帧的镜头。

比如雾霾天气路上的车辆:

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

准备超车,成功超越,消失在雾霾中。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

或者给道路上的车“喷上”不同的颜色。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

这样看,似乎这项技术不仅帮设计师解决了难题,甚至以后电影拍摄也可以在GPU里进行了。

这项研究本身基于三类研究:

1.可解释的图像表示,比如Tejas D Kulkarni的DC-IGN;

2.深度生成模型,比如大家都知道的GAN;

3.深度图像处理,比如风格迁移。

不过这些研究主要还是围绕2D图像来进行的,我们介绍的这项新研究则在其中加入了3D感知

语义、纹理、几何分层

主要的原理是将图像的语义、纹理、几何三个维度分层,分别经过一系列去渲染和渲染流程。

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

先让原图像经过语义去渲染器,生成语义地图;同时经过纹理去渲染器,生成纹理代码;然后还要经过几何去渲染器,生成3D属性。

3D属性经过几何渲染器后,与语义地图及纹理代码共同进行纹理渲染,最终实现图像分层,将图像分解为背景和多个前景对象。

3D几何推理:脑补3D

想让照片里的美女“回头”?清华MIT谷歌用AI帮你实现了

上图是几何解释模块。 该模块获取整个图像,使用来自对象提议的适当公式推断3D属性,并且可以生成可解释的表示以用于理解和操纵。这里首先使用MaskRCNN对对象实例进行分割。 对于每个对象,推断其3D网格模型和对象姿势。

之后,得出其3D属性,确保重新得出的3D投影一致。

语义&纹理推理

在语义和纹理分析的过程中,先要分析类似场景的2D信息。

使用两个单独的卷积网络来获得背景中道路、天空、树林等部分,以及前景中的轿车、货车等物体,以及的必要颜色和纹理描述代码。

传送门

3D-Aware Scene Manipulation via Inverse Graphics
Shunyu Yao, Tzu Ming Harry Hsu, Jun-Yan Zhu, Jiajun Wu, Antonio Torralba, William T. Freeman, Joshua B. Tenenbaum
https://arxiv.org/pdf/1808.09351.pdf

加入社群

量子位AI社群19群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

  • 微信
  • 扫一扫
  • weinxin
  • 微信公众号
  • 扫一扫
  • weinxin
广告也精彩
一步裙
Pacewear 腾讯HC 智能手表 运动防水定位心率电话苹果蓝牙标准版 咨询客服 领取60元优惠券
商品3
针织衫
广告也精彩

发表评论

:?: :razz: :sad: :evil: :!: :smile: :oops: :grin: :eek: :shock: :???: :cool: :lol: :mad: :twisted: :roll: :wink: :idea: :arrow: :neutral: :cry: :mrgreen: